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Abstract: In order to reduce the influence of scattering and absorption on tissue fluorescence 
spectra, after tissue fluorescence and diffuse reflectance in different tissue optical properties 
were simulated by the Monte Carlo method, a tissue intrinsic fluorescence recovering 
algorithm making use of diffuse reflectance spectrum was developed. The empirical 
parameters in the tissue intrinsic fluorescence recovering algorithm were coded as a particle 
in the solution domain, the classification performance was defined as the fitness, and then a 
particle swarm optimization (PSO) algorithm was established for empirical parameters 
optimization. The skin autofluorescence and diffuse reflectance spectra of 327 subjects were 
collected in Anhui Provincial Hospital. The skin intrinsic autofluorescence spectra were 
recovered by using the empirical approach and the integration area of the spectra were 
calculated as fluorescence intensity. Receiver operating characteristic (ROC) analysis for 
fluorescence intensity was applied to evaluate the classification performance in type 2 
diabetes screening. In addition, a support vector machine (SVM) method was implemented to 
improve the performance of the classification. The results showed that the sensitivity and 
specificity were 32% and 76% respectively, and the area under the curve was 0.54 before 
recovering, while the sensitivity and specificity were 72% and 86% respectively, and the area 
under the curve was 0.86 after recovering. Furthermore, the sensitivity and specificity 
increased to 83% and 86% respectively when using linear SVM while 84% and 88%, 
respectively, when using nonlinear SVM. The results indicate that using the tissue 
fluorescence spectrum recovery algorithm based on PSO can improve the application of tissue 
fluorescence spectroscopy effectively. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Fluorescence, the re-emission of light by fluorophore that has absorbed a shorter wavelength 
light, is widely used to investigate biological tissues [1, 2]. The shape and intensity of the 
fluorescence spectrum contain valuable information on the identity and density of fluorophore 
in tissue. However, in samples with high scattering or absorption, such as tissue, both the 
shape and intensity of measured fluorescence spectrum can be heavily distorted, and then 
resulting in the measured fluorescence spectrum may not be proportional to fluorophore 
concentration [3]. Untangling the effects of this attenuation on the measured fluorescence 
spectrum is necessary for truly quantitative analysis. 

Several methods have been reported to disentangle the effects of absorption and scattering 
from the measured fluorescence spectrum to recover the intrinsic fluorescence spectrum. 
Bradley et al. reviewed over 50 different publications that addressed the recovery of intrinsic 
fluorescence spectrum [4]. These studies have used theoretical methods based on physical 
models of light tissue interactions, including analytical approaches based on diffusion theory 
[5, 6] as well as computational techniques such as Monte Carlo simulations of photon 
transport in turbid media [7] or simple empirical approaches [8, 9]. Although promising 
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results have been obtained with various methods, thus far, all available methods have their 
limitation. 

Diffusion theory is an approximation to the radiative transfer equation and it describes 
photons transporting in absorbing and scattering media. Thus it can correct the measured 
fluorescence spectrum based on the tissue absorption and scattering properties to extract the 
intrinsic fluorescence spectrum analytically. However, the diffusion approximation is only 
valid when the absorption coefficient of the medium is at least an order of magnitude lower 
than scattering, and the distances between sources and detectors are much greater than the 
mean free path of diffusing photons in that medium. 

The Monte Carlo method is stochastic in nature and is not limited to the diffusion regime. 
It can therefore be used to model light transport over the entire UV-visible-NIR range. 
However, Monte Carlo simulations are computationally time-consuming and have historically 
not been very convenient to use as inverse models. Empirical approach, including subtraction 
techniques and ratio techniques, always employ the measurements of the reflected 
illumination intensity in order to reduce the effects of tissue optical properties on 
fluorescence. In subtraction techniques, attenuation in fluorescence due to tissue optical 
properties is compensated for by subtracting a proportion of the corresponding change in the 
reflected excitation light intensity from the fluorescence intensity. Subsequently, investigators 
argue that it would be more appropriate to utilize a ratio of fluorescence intensity to diffuse 
reflectance intensity rather than an algebraic subtraction. However, there has been no clear 
consensus on how to realize the ratio techniques and how to determine the form and the 
parameters of ratio equation. In addition, as the same to subtraction technique, ratio 
techniques also lack the model foundation. 

Advanced glycation end products (AGE) are a complex and heterogeneous group of 
compounds that have been implicated in diabetes related complications [10]. Skin 
autofluorescence is related to the accumulation of AGE and has a potential to provide 
prognostic information of diabetes and its related complications [11, 12]. While the skin 
autofluorescence is heavily distorted by the tissue scattering and absorption, resulting in the 
measured autofluorescence not be proportional to AGE accumulation. In this paper, we 
simulated the tissue fluorescence and diffuse reflectance at both the excitation and the 
emission wavelength in different tissue optical properties by Monte Carlo method and 
introduced a tissue intrinsic fluorescence recovering algorithm [13], which made use of a 
diffuse reflectance measurement taken at the same location. In order to ensure the recovering 
performance, a particle swarm optimization (PSO) algorithm was introduced to accomplish 
the empirical parameters optimization. Subsequently, we introduced this recovering algorithm 
to untangle the effects of tissue attenuation on the measured fluorescence spectrum and used 
support vector machine (SVM) to classify the recovered intrinsic fluorescence for type 2 
diabetes screening. 

2. Materials and methods 

2.1 Subjects 

A total of 346 subjects (152 male, 194 female) were recruited in Anhui Provincial Hospital in 
2014. Meanwhile, 19 subjects were excluded according to the exclusion criteria:1) subjects 
unwilling to comply with test specifications; 2) the site of the skin measured has scar, moss-
like sclerosis spots, vitiligo, deformity and infectious skin disease. At last, 327 subjects (143 
male, 184 female) were included. The mean age was (47 ± 17) years, mean height was (164 ± 
8) cm, mean weight was (64.7 ± 11.4) kg and mean BMI was (23.6 ± 3.7) kg/m2. Oral glucose 
tolerance test (OGTT) was carried out for all subjects. And then, all subjects were divided 
into diabetes mellitus (DM) group and non-diabetic mellitus (NDM) group based on OGTT-
2h-value (If OGTT-2h-value was greater than 11.1/L, determine the subject with diabetes, 
otherwise, determine non-diabetic). Ultimately, there were 208 subjects in DM group, and 
119 subjects in NDM group. Additionally, skin autofluorescence was measured for both DM 
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and NDM groups, everyone was measured three times and the average was taken as the final 
value. The trial was approved by the Medical Ethics Committee of Anhui Provincial Hospital, 
and informed consent form was obtained from the subjects. 

2.2 Instrumentation 

The optical system, as depicted in Fig. 1(a), has been described particularly in our previous 
work [14]. In short, it consisted of an ultraviolet light source as excitation source, a broadband 
light source, a trifurcated fiber-optic probe, and a compact charge-coupled device (CCD) 
spectrometer. In addition, there were other parts such as power supply units, control units, 
optical and mechanical parts. 

 

Fig. 1. Schematic of the optical system with a fiber-optic probe. 

The above trifurcated fiber-optic probe consisted of two channels, as depicted in Fig. 1(b), 
identified as a and b. The channel a, which connected to the ultraviolet light source, was 
designed for fluorescence measurements. The channel b, which connected to the broadband 
light source, was used for reflectance measurements. The illumination fibers of channels a 
and b were arranged in a concentric circle at the probe distal end as Fig. 1(c). Moreover, the 
numerical aperture of all fibers was 0.22, and the core diameters of illumination and 
collection fibers were 200 and 600 μm, respectively. 

Convolution was used to integrate over the illumination and collection fibers in order to 
determine the probability that a photon traveling a fixed distance and would be collected [15, 
16]. Considering current probes’s geometry, the probability of collection of a photon traveling 
a net distance tr  between the points of entering and exiting the medium is given by: 

 ( ) ( )
( )

( )
( )

2 22 2 2 2
1 1

2 2

1
6 cos cos

2 2

ub
i t c

ti lb

s s x r r s x r
p s x dx

s x s s x rrπ
− −
   + − − + − −

= ⋅ −    
− −      

  (1) 

Where ( )min ,i t cub r s r r= − + , ( )max ,i t clb r s r r= − − − , the factor of 6 accounts for the six 

illumination fibers surrounding the collection fiber, ir  means the radius of the illumination 

fiber, cr  means the radius of the collection fiber, s  means the distance between the center of 

illumination and collection fibers, which is 500 μm, tr  is equal to s . 
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Finally, the excitation wavelength was 370 nm, and the corresponding emission 
wavelength was 480 nm. The spectrometer was USB4000-UV-VIS fiber optic spectrometer 
of Ocean Optics and the range of integration times was 3.8 ms ~10 s. 

Figure 2 showed the flow chart of tissue fluorescence and diffusion reflectance collection. 
During the fluorescence measurement, excitation source was activated; while in diffusion 
reflectance spectra measurement, the broadband light source was activated. Ultimately, the 
fluorescence and diffuse reflectance spectra were transmitted to the computer. 

 

Fig. 2. Flow chart of spectra collection. 

2.3 Recovery algorithm 

Tissue diffuse reflectance spectrum was measured at the same site with the fluorescence, and 
it could be employed to recover the distortion of fluorescence due to tissue absorption and 
scattering. To extract the intrinsic fluorescence from the extrinsic measured fluorescence, an 
empirical recovery algorithm based on diffuse reflectance spectrum was established. The 
central mission was to determine the equation form and the corresponding parameters. 

 ( ) ( ) ( ) ( )( ), ,m m x mf function F R Rλ λ λ λ=  (2) 

The recovery algorithm described in Eq. (2) was based on the assumption that the optical 
absorption at the excitation wavelength xλ was high relative to that at emission wavelength 

mλ . This was generally true in tissue if the excitation wavelength was in the UV to the blue 

end of the visible spectrum. As a result, most fluorophore absorption events occurred close to 
the source fiber. The migration paths of the fluorescence emission photons at mλ  were then 

approximated by those of the reflectance photons at mλ , emitted and collected using the same 

fiber optic geometry. The tissue optical model for fluorescence and diffuse reflectance 
collection were shown in Fig. 3. 
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Fig. 3. Tissue optical model (a) for fluorescence measurement; (b) for diffuse reflectance 
spectra measurement. 

2.4 Particle swarm optimization (PSO) algorithm 

The particle swarm is a population based stochastic algorithm for optimization which is based 
on social psychological principles [17, 18]. In PSO algorithm, the particles are placed in the 
search space, and each evaluates the objective function at its current location. Then each 
particle determines its movement through the search space by combining some aspect of the 
history of its own current and best locations with those of one or more members of the swarm, 
with some random perturbations. The next iteration takes place after all particles are moved. 
Eventually the swarm as a whole, like a flock of birds collectively foraging for food, is likely 
to move close to an optimum of the fitness function. 

Each individual in the particle swarm is composed of three D-dimensional vectors, where 
D  is the dimensionality of the search space. These are the current position ix , the velocity 

iv , and the previous best position ip  for each individual. In addition, for the particle swarm, 

there is the global best position gp . The process for implementing PSO is shown in 

Algorithm 1. Figure 4 showed the flow chart of PSO algorithm. 

Algorithm 1 

1. Initialize a population array of particles with random positions and velocities on D-
dimensions in the search space. 

2. Loop. 

3. For each particle, evaluate the desired optimization fitness function in D variables. 

4. Compare particle’s fitness evaluation with its ipbest . If current value is better than 

ipbest , then set ipbest  equal to the current value, and ip  equal to the current 

location ix  in D-dimensional space. 

5. Identify the particle in the neighborhood with the best success so far, and assign its 
index to the variable g . 

6. Change the velocity and position of the particle according to the following equation 

 ( ) ( ) ( )( ) ( )( )1 21id id id id gd idv t v t rand p x t rand p x tω η η+ = + − + −  (3) 

 ( ) ( ) ( )1 1id id idx t x t v t+ = + +  (4) 
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where ω  is inertia weight; idv  is particle velocity; idp  is optimal individual particle; 

gdp  is optimal global particle; 1η , 2η are learning factors; idx  is particle location 

and rand  is random number between 0 and 1. 

7. If a criterion is met (usually a sufficiently good fitness or a maximum number of 
iterations), exit loop. 

8. End loop. 

 

Fig. 4. Flow chart of PSO algorithm. 

2.5 Support vector machine 

Support vector machine (SVM) is a machine-learning method based on the principle of 
structural risk minimization and originally developed by Vapnik and Burges [19]. It has many 
unique advantages in solving small sample, nonlinear and high dimensional pattern 
recognition. The main mechanism of SVM is to hunt an optimal separating hyper plane that 
meets the classification requirements. The plane should ensure the required classification 
accuracy, as well as make the classification interval maximum. In theory, SVM can achieve 
the optimal classification for linearly separable problems. For nonlinear separable problems, 
they are firstly mapped into a high dimensional linearly separable space through a nonlinear 
mapping, and then traded as linearly separable problems. The kernel functions used in 
constructing nonlinear SVM classifiers are the polynomial function, the radial basic function 
(RBF), and the neural network function, etc. One of the most used kernel functions in the 
reported work is the RBF kernel defined as: 

 ( ) ( )2
, expi iK x x x xγ= − ∗ −  (5) 

During the classification using SVM, two aspects should be considered: how to choose the 
optimal input feature subset for SVM, and how to set the best kernel parameters. These two 
aspects are crucial, because the feature subset choice influences the appropriate kernel 
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parameters and vice versa. Therefore, obtaining the optimal feature subset and SVM 
parameters must occur simultaneously. In this paper, skin autofluorescence was chosen as 
input feature. The parameters that should be optimized include penalty parameter C  and the 
kernel function parameters such as parameter γ  for the RBF kernel. To design a SVM, one 

must choose a kernel function, set the kernel parameters and determine the penalty parameter. 
Penalty parameter represents the compromise on training error and generalization ability. 
Cross-validation and grid-optimization methods are alternative to determine the kernel 
function and the optimal parameters. In this work, linear SVM and nonlinear SVM based on 
RBF kernel were used to classify the skin autofluorescence of control subjects and diabetes. 

3. Results and discussion 

3.1 Tissue intrinsic fluorescence recovery algorithm 

Monte Carlo method was used to simulate the tissue fluorescence and diffuse reflectance in 
different tissue optical properties. During the simulation, we made some assumptions. Firstly, 
the illumination fiber and the collection fiber were set to the same type of 200/220μm fiber 
with a numerical aperture (NA) of 0.22, and the separation between the centers of the 
illumination and the collection fibers was 0.3 mm. Secondly, the size of tissue was set to 4 
mm × 4 mm, and the thickness was 1mm. For the excitation wavelength, we set tissue 
absorption coefficient ranging from 1 to 15 cm−1 and reduced scattering coefficient to 
5.1cm−1; for the emission wavelength, we set tissue absorption coefficient is 1.1 cm−1, and 
reduced scattering coefficient ranging from 10 to 150 cm−1. The refractive index of tissue was 
1.37, the anisotropic properties of tissue was 0.9 [20]. Because the scattering coefficient at 
excitation wavelength ,s xu  and absorption coefficient at emission wavelength ,s mu  were 

constants, scattering coefficient meant the reduced scattering coefficient at emission 
wavelength ,s mu  and absorption coefficient meant the absorption coefficient at excitation 

wavelength ,a xu  in the following description. 

The simulation results were shown in Fig. 5, among them, xk  and mk  were semi-

empirical parameters. Figure 5(a) showed tissue fluorescence ( )mF λ , diffuse reflectance at 

excitation wavelength xR  and diffuse reflectance at emission wavelength mR  in different 

scattering coefficient, when absorption coefficient ,a xu  was 5 cm−1. In Fig. 5(a), xR  remained 

constant, while the ( )mF λ  and mR  increased as the tissue scattering coefficient rising, and 

mR  increased significantly faster than ( )mF λ . 

Figure 5(b) showed ( )mF λ , xR  and mR  in different absorption coefficient, when 

scattering coefficient ,s mu  was 50 cm−1. As showed in this Fig., mR  remained unchanged, 

while the ( )mF λ  and xR  decreased as the tissue scattering coefficient rising, and xR  

decreased few faster than ( )mF λ . 

Figure 5(c) showed ( )mF λ , the ratio of ( )mF λ  to mR , the ratio of ( )mF λ  to ( ) mk

mR  in 

different scattering coefficient, when absorption coefficient ,a xu  was 5 cm−1. In this Fig., the 

ratio of ( )mF λ  to mR  decreased as the tissue scattering coefficient rising, while ( )mF λ , the 

ratio of ( )mF λ  to ( ) mk

mR  increased as the tissue scattering coefficient rising, and the change 

of the ratio of ( )mF λ  to ( ) mk

mR  was smaller than ( )mF λ . 
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Figure 5(d) showed ( )mF λ , the ratio of ( )mF λ  to xR , the ratio of ( )mF λ  to ( ) xk

xR  in 

different absorption coefficient, when scattering coefficient ,s mu  was 50 cm−1. In this Fig., 

( )mF λ  decreased as the tissue absorption coefficient rising, while the ratio of ( )mF λ  to xR , 

the ratio of ( )mF λ  to ( ) xk

xR  varying in a certain range as the tissue scattering coefficient 

rising, and the change of the ratio of ( )mF λ  to ( ) xk

xR  was smaller than the ratio of ( )mF λ  

to xR . 

 

Fig. 5. Results of Monte Carlo modeling (a), (c): 
1

, 5 −=a xu cm ; (b), (d): 
1

, 50 −=s mu cm  

It could be seen that most of the changes in fluorescence magnitude due to tissue 
absorption at the excitation wavelength and tissue scattering at the emission wavelength could 
be corrected by further dividing the raw fluorescence and by an empirical power function of 

diffuse reflectance at excitation wavelength and diffuse reflectance at emission wavelength 
respectively. Furthermore, we can extend singleness emission wavelength to emission 
spectrum specific tissue. So an empirical approach, described as Eq. (6), was introduced to 
recover the intrinsic fluorescence [13]. 

 ( ) ( )
( ) ( )x m

m
m k k

x m

F
f

R R

λ
λ

λ λ
=  (6) 

where ( )mF λ  was the measured fluorescence spectrum, ( )xR λ  and ( )mR λ  were the 

spectrally integrated reflectance signals at the excitation wavelength and the emission 
wavelength, respectively. Both ( )mF λ , ( )xR λ and ( )mR λ  were calculated use the raw 
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measured spectrum devided the collection probability. The kx and km were semi-empirical 
parameters ranging from 0 ~1. 

3.2 Recovery parameters optimization 

Diabetes mellitus (DM) and impaired glucose tolerance (IGT) detection are conventionally 
based on glycemic criteria. Skin autofluorescence (SAF) is a noninvasive proxy of tissue 
accumulation of advanced glycation end products (AGE) which is considered to be a carrier 
of glycometabolic memory [21]. While the detected skin autofluorescence spectrum is heavily 
distorted due to emitted fluorescence being absorbed and scattered within the sample, and 
furthermore, the propagation of the excitation light is affected by the background absorption 
and scattering, they result in that the detected autofluorescence may not be proportional to 
fluorophore concentration. In order to disentangle the effects of absorption and scattering 
from the measured autofluorescence spectrum, the empirical algorithm described in section 
3.1 was introduced, and then we used the PSO algorithm to optimize the recovery parameters. 
Table 1 showed the PSO parameters for recovery parameters optimization. 

Table 1. Description of PSO parameters for recovery parameters optimization 

Character Description

Particle Parameter vector, { },x mk k  

Particle swarm The set of parameter vectors, { }1
,x mk k , { }2

,x mk k ,…, { },x m n
k k  

Velocity of particle The update velocity of parameter vector, { },x mv v  

Position of particle The value of parameter vector 

Fitness of particle The classification performance of fluorescence 

Individual optimum The best position of a particle during iteration 

Global optimum The best position of a particle swarm during iteration 

Variation condition Assign values to particles whom fitness distribute in the last 10 percent 

Optimum condition Reach convergence of fitness or the maximum iteration times 

 
During the parameters optimization, recovered skin autofluorescence integrated intensity 

from 400 nm to 600 nm of both DM and NDM group subjects was analyzed by receiver 
operating characteristic (ROC), and the fitness of particle was defined as the area under the 
ROC curve (AUC); population size was set to 20; and the maximum number of iterations was 
set to 50. Figure 6 showed the optimization results of PSO algorithm. Figure 6(a) showed that 
the recovery parameters xk  and mk  tended to be stable after 17 times iteration, and their 

values were 0.61 and 0.43 respectively. In the corresponding, the best fitness of particle was 
0.86 in Fig. 6(b). 
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Fig. 6. Optimization results by PSO algorithm (a): particle position; (b): fitness during 
iteration. 

The ROC curve of fluorescence for type 2 diabetes screening under parameter {0.61, 
0.43} and four others sets were shown in Fig. 7 and Table 2. Parameters {1, 1}, {0, 0}, {1, 

0}, {0, 1} showed ( )mf λ  equal to ( ) ( ) ( )( )/m x mF R Rλ λ λ∗ , ( )mF λ , ( ) ( )/m xF Rλ λ , 

( ) ( )/m mF Rλ λ ,respectively. For the parameter {0.61, 0.43}, the area under ROC curve was 

0.86, significantly higher than the value of 0.54 before recovering. The sensitivity and 
specificity were 72% and 86% respectively, significantly better than the values of 32% and 
76% before recovering. 

 

Fig. 7. ROC curves quantifying the performance of five sets recovery parameters. 

Figure 8 showed the raw measured fluorescence spectrum and the recovered intrinsic 
fluorescence spectrum of both DM and NDM group subjects. The red solid and dotted line 
were the raw measured fluorescence spectrum and the recovered intrinsic fluorescence 
spectrum of DM group, respectively; Black solid and dotted line were the raw measured 
fluorescence spectrum and the recovered intrinsic fluorescence spectrum of NDM group, 
respectively. The raw measured fluorescence spectrum intensity of DM group was 
significantly higher than the NDM group. Both DM and NDM group, the measured 
fluorescence spectrum existed peaks at 450 nm, 480 nm and 510 nm. For the measured 
fluorescence of DM group, the peak at 510 nm was significantly higher than the peak at 480 
nm, while for the measured fluorescence of NDM group, the peak at 510 nm was equal to the 
peak at 480 nm. The measured fluorescence of both DM and NDM group exist an obvious 
difference in curve shape. 
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Table 2. Quantifying the performance of five sets recovery parameters 

 Sensitivity (%) Specificity(%) AUC 

xk  = 0.61, mk  = 0.43 72 86 0.86 

xk  = 1, mk  = 1 86 49 0.72 

xk  = 0, mk  = 0 32 76 0.54 

xk  = 1, mk  = 0 75 78 0.80 

xk  = 0, mk  = 1 40 81 0.63 

95% CI 31.72~90.28 56.03~91.97 0.551~0.870 

t (χ2) 5.785a 11.432a 12.360a 

Notes: CI: confidence intervals; aP<0.01. 

While during intrinsic fluorescence recovering, the fluorescence intensity of DM group 
decreased and the fluorescence shape of DM group was distorted; the fluorescence intensity 
of NDM group increased and the fluorescence shape of NDM group was distorted. After 
recovered, the fluorescence spectrum intensity of DM group was still significantly higher than 
NDM group, but the shape was very similar. For the recovered intrinsic fluorescence spectra 
of both DM and NDM group, the fluorescence emission peak at 450nm changed to 440 nm. 
The main emission peak changed to 480 nm, which was more consistent with matrix 
organization fluorescence spectrum stimulated emission of radiation. 

 

Fig. 8. Skin autofluorescence spectra (measured extrinsic and recovered intrinsic) of DM and 
NDM group. 

3.3 Fluorescence classification for type 2 diabetes screening 

The dimension of spectrum was generally high. For instance, the tissue intrinsic 
autofluorescence spectrum used in this study had 200 dimensions (from 400 nm to 600 nm). 
The high dimension of data space may cause complexity in implementation of the SVM 
algorithm because computation of all the inner products between the sample and support 
vectors in a high-dimensional feature space was complicated and time-consuming. In order to 
simplify the implementation of the SVM algorithm and improve its performance, principal 
component analysis (PCA) method was introduced to reduce the dimensions of the tissue 
intrinsic autofluorescence. 
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Fig. 9. Contributions of principal components to the total variance of tissue intrinsic 
fluorescence. 

When PCA was used to process autofluorescence spectra, it transformed wavelengths, the 
original spectral variables, into a set of PC spectra. Each original spectrum was a combination 
of the PC loading spectra that were orthogonal to each other. The PCs with negligible 
contributions to the variance of the data set were eliminated. The dimensions of the data set 
for developing the diagnostic algorithm can be significantly reduced without losing useful 
information. Figure 9 showed the contribution of PC to the variance of the 327 
autofluorescence spectra. The PCs were calculated with a MATLAB based PCA program. As 
shown in the Fig., the first PC accounted for 92.8% of the total variance, the first two PCs 
accounted for 96.1% and the first five PCs accounted for 99.5%. 

Table 3. Results of classification of autofluorescence with different algorithms 

Algorithm sensitivity Specificity Accuracy 

Linear SVM 0.83 0.86 82.9 
Nonlinear SVM (RBF) 0.84 0.88 84.1 

Table 4. Comparison of FPG, HbA1c and noninvasive method 

Paper Subject(DM) Diagnose criteria 
OGTT 2hPG Method sensitivity Specificity AUC 

Jesudason 
[22] 505(177) ≥11.1mmol/L 

FPG 74.1 94.5 0.91 

HbA1c 80.0 86.3 0.90 

Maynard 
[23] 351(84) ≥140mg/dl 

FPG 58.0 77.4 0.72 
HbA1c 63.8 77.4 0.79 

Noninvasive 74.7 77.4 0.80 

Zhang [24] 203(63) ≥11.1mmol/L FPG 77.8 77.5 - 
Noninvasive 69.6 95.7 - 

Zhu [25] 201(63) ≥11.1mmol/L FPG 65.1 86.2 0.83 
Noninvasive 77.8 86.2 0.92 

This paper 327(208) ≥11.1mmol/L Noninvasive 84.0 88.0 - 

 
In the process of SVM learning and testing, all of the tissue intrinsic fluorescence spectra 

were analyzed by PCA method and the first five PCs were chosen as the input vectors. The 
327 samples were randomly divided into training set (75%) and testing set (25%). The 
training set was used to cross validation and then optimize the kernel parameters; the testing 
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set was used to evaluate the performance of the SVM algorithms. Table 3 showed the results 
of the classification of the first five PCs. The results demonstrated that both the linear SVM 
algorithm and nonlinear SVM has a good performance in spectra classification for diabetes 
screening. 

4. Conclusion 

Tissue fluorescence spectroscopy is highly sensitive to the microenvironment inside the 
tissue, and has broad application prospects in cancer tissue detection, photodynamic therapy 
and other fields. 

In this paper, tissue fluorescence and diffuse reflectance in different tissue optical 
properties were simulated by Monte Carlo method and tissue intrinsic fluorescence 
recovering algorithm, making use of a diffuse reflectance measurement taken at the same 
location, was established. The empirical parameters in tissue intrinsic fluorescence recovering 
algorithm were coded as a particle in solution domain, the classification performance was 
defined as the fitness, and then a particle swarm optimization (PSO) algorithm was 
established for empirical parameters optimization. 

The tissue intrinsic fluorescence recovering algorithm was used in skin autofluorescence 
recovering, and then the recovered intrinsic fluorescence was analyzed for diabetes screening 
combing with SVM. The comparison results of FPG, HbA1c and noninvasive method were 
shown in Table 4. The first set of data showed the performance of FPG and HbA1c for type 2 
diabetes screening introduced by American Diabetes Association. The second to fourth sets of 
data showed the comparison of FPG, HbA1c and noninvasive method introduced by different 
groups. While the last set data showed the performance of noninvasive method for type 2 
diabetes screening in this paper. From Table 4, noninvasive method based on skin 
fluorescence showed a better performance than FPG and HbA1c in diabetes screening. And 
comparing to the previous work, tissue intrinsic fluorescence recovering by empirical 
approach based on PSO algorithm in this paper can improve the effect of diabetes screening 
based on fluorescence spectrometry, has an obvious progress. 
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